
Algorithms and Data Structures

NTNU IDATA 2302

Session II, May 2023

A few tips before to start. Some questions ask you to argue or
explain, other may ask your to prove. When arguing/explaining,
we expect a few sentences to justify, but when proving, we expect a
detailed step-by-step reasoning.

Add at least a sentence to motivate the answer to every question.
No point will be given for a result alone.

You are not required to write a program that would actually
”compiles”. You can—if you feel it helps—but you can also use
pseudo-code, or bullet points if you prefer, or any combination there
of.

There is a bonus question, that is, you can still have a full score
without answering it. If you answer it correctly, the points are how-
ever part of your total score.

Good luck!

1 Basic Knowledge

Question 1.1 (1 pt.). What is the runtime complexity of the Bubble sort algo-
rithm? Why?

Question 1.2 (1 pt.). Consider the algorithm below, which counts the number
of time a given letter occurs in the given word. As for the runtime, what is the
best case scenario?´

int countOccurrences(String word, char letter) {

int count = 0;

for (int i=0 ; i<word.length() ; i++) {

if (word.charAt(i) == letter) {

count++;

}

}

return count;

}

1

Question 1.3 (1 pt). Consider an algorithm A whose runtime is described by
the function f(x) = 3x−1

x . Is this correct to say that “A runs in O(1)”? Explain
your reasoning?

Question 1.4 (1 pt.). Consider the hash-table shown below. It resolves col-
lisions using “separate chaining”. Suppose we insert a piece of data with key
“Lisa”, whose “hash” is 123. Explain where would it be inserted?

Figure 1: Internal state of the hashtable

Question 1.5 (1 pt.). What are the two main techniques that “dynamic pro-
gramming” relies on to help improve recursive algorithms?

2 Linked-Lists (5 pts.)

Consider the following sketch of a Java implementation of linked-lists.

class List<T> {

private Node<T> head;

public void delete(T item) { ... }

}

class Node<T> {

2

List next;

T item;

}

Question 2.1 (1.5 pt.). Provide an iterative algorithm for the delete operation
below. This operation should delete the given item from the list if it exists or left
the list unchanged otherwise.

void delete(T item);

Question 2.2 (2 pts.). In the worst case, how many arithmetic and logical
operations does your deletion algorithm perform for a linked list containing n
nodes? Detail your calculation. Arithmetic and logic operations include:

• assignments such as x = 23 + y ;

• comparisons, such as =, <, ≤, ldots ;

• logical operations such as &&, ||, or ! ;

• arithmetic operations such as +, −, ×, and so on.

Question 2.3. Give a recursive alternative implementation of this delete op-
eration.

3 Emergency Room Triage

In this exercise, we look at hospitals, and emergency departments in particular.
When a new patient arrives, a doctor first quickly decides how urgent is the
situation, and then records her in the system, including for instance her name,
age, address, and priority (a value from 1 to 10, where 1 is the highest prior-
ity). The emergency department can thus retrieve the patient with the highest
priority and help them as soon as possible.

Your task is to design a data structure to hold this list of patients.

Question 3.1 (1. pt). Which data structure would you use to maintain the
patient by priority and retrieve them by priority efficiently? Justify your choice.

Question 3.2 (2 pt.). Explain how the extraction of the patient with the high-
est priority would work, with the data structure you have selected. Detail the
algorithm you would use.

Question 3.3 (2 pt.). Explain how the insertion of a patient would work, with
your data structure. Detail the algorithm you would use.

3

4 Dependency Management

In this exercise, we look at package management systems, such as Maven in
Java, NPM for JavaScript, PIP in Python, Cargo in Rust, NuGet in C#, etc.

Sometimes package installation fails because of so-called cyclic dependen-
cies. Here is an example inspired by the Python ecosystem. The libraries
”matplotlib”, ”numpy”, and ”scipy” are commonly used together in data sci-
ence projects. ”scipy 1.7.0” depends on ”numpy 1.20.3” for array processing,
and numpy 1.20.3 depends on ”matplotlib 3.4.2”, which in turn depends on
”numpy”. This creates a cycle dependency between the four libraries, which
can cause issues when installing or updating them, and is nicknamed the “de-
pendency hell”.

For the sake of simplicity, we imagine the following API for our package
management system:

1 public class Package {

2 public String getName() { }

3 public String getVersion() { }

4 public List<Package> getDependencies() { }

5 public boolean equals(Object other) { }

6 }

7

8 public class PackageManager {

9 boolean hasCycle(Package package) {}

10 }

The interface Package represents the packages a developer install in her
environment. Each package is identified by a unique name and a version (here
a String for the sake of simplicity). Besides, each package may depend on an
arbitrary number of other packages that are its “direct” dependencies.

Your task is to propose an algorithm that detects such cycles in the depen-
dencies.

Question 4.1 (1 pt.). What data structure does the dependencies form?

Question 4.2 (2 pts.). Give an algorithm to detect cycles in the dependencies
of a given package. Your algorithm should detect cycles of any length.

Question 4.3 (2 pts.). In the worst case, what is the runtime complexity of
your algorithm? Explain your reasoning.

4

