
Final Examination

NTNU 2302 / Algorithms and Data Structures

Session II • May 12, 2022

This is the final examination of the algorithm an data structure course. It
contains four parts, each having 5 questions worth 2.5 points. You have four
hours.

You can describe algorithms using plain English and bullet points, pseu-
docode, or some well-known programming syntax (i.e., C, Python, Java, etc).
Choose what you are the most comfortable with.

Note that you are not required to figure out “optimal” algorithms (if any
exist for these problems). Rather you have to show consistency through your an-
swers, by providing a working solution and computing its complexity/efficiency
properly.

Good luck.

1 Basic Knowledge

1. Can “testing” establish the correctness of an algorithm? Why?

2. Consider the following Java function. Explain (in words) what would
happen (and why) if one invokes it with n = −3 as argument.

int factorial (int n) {

if (n==0) return 1;

return n * factorial(n-1);

}

3. What is an “array” . How does it differ from a linked-list?

4. Quick-sort runs in O(n log n). Is it correct to say that it also runs in
O(n2). Explain your reasoning.

5. Consider the graph shown below on Figure 1. In what order will the
nodes be reached during a depth-first traversal, starting from Node A,
and processing neighbor nodes in alphabetical order?

1



start

A BC D

E F

Figure 1: Sample directed graph, with 6 nodes.

2 Algorithm Analysis

The “Caesar cipher” is an old encryption algorithm used during the Roman
empire. The idea is to shift all letters by a fixed number along the alphabet,
either forward or backward. To encode and decode, we must know the secret
key, which is the length of this shift. Here are a few examples assuming a 26
letters alphabet from ’a’ to ’z’,

• The word “abc” gets encoded as “bcd” when the key/shift is 1. The
character ’a’ becomes ’b’ when shifted by 1, the character ’b’ becomes ’c’,
and, ’c’ becomes ’d’.

• The word “zoo” shifted by 2 gets encoded as “bqq”. The second letter
after ’z’ is ’b’ (we assume that the alphabet forms a circle). The second
letter after ’o’ is ’q’.

• The word “algorithm” gets encoded as “dojrulwkp” if the key/shift is 3.
The third character after ’a’ is ’d’, the third character after ’l’ is ’o’ and
so on and so forth.

The following Java function is one possible implementation of the Caesar
cipher. It uses the ASCII character encoding, which preserves the alphabet
ordering. For example, in ASCII, ’a’ is encoded as 97, ’b’ as 98, ’c’ as 99, etc.
In Java, converting a “char” to an “int” yields an ASCII code.

static char[] caesarCipher(char[] givenWord, int shift) {

char[] result = new char[givenWord.length];

for(int index=0 ; index<givenWord.length ; index++) {

int asciiCode = (int) givenWord[index];

int encoded = asciiCode + shift;

if (encoded > (int) 'z') {

encoded -= 26;

}

result[index] = (char) encoded;

2



}

return result;

}

Questions

1. Explain how the execution unfolds given the word “zone” and a shift of 4.

2. What is the size of the problem, that is, what drives the runtime and
memory consumption.

3. What is the best case scenario? What is the execution time efficiency/complexity.
Explain your reasoning.

4. What is the worst case scenario? What is the execution time efficiency/complexity.
Explain your reasoning.

5. What is the average case scenario? What is the execution time. Explain
your reasoning. (Assume that every letter is equally probable).

3 Algorithm Design

Consider linked-list as shown in Figure 2, where each node points to the next
one. As we build such list, it is possible to build “loops” as shown on Figure 3.
We would like to design a procedure to check whether the pointers that make
up the list forms a loop or not.

12 99 37 76

Figure 2: A “regular” linked-list.

12 99 37 76

542315

Figure 3: A “invalid” linked-list that includes a loop.

For the sake of simplicity, we will assume the existence of the following
procedure that helps manipulate the nodes of these lists:

• Node getNext (Node n) {...} returns the “next” Node or null if it is
not defined.

This task is about a procedure boolean hasLoop (Node first) {...},
which returns true only if the given list contains a loop.

3



Questions

1. Propose an “iterative” algorithm to detect such a loop. Feel free to add
information to the node structure, if you feel it helps.

2. What is the time efficiency of your algorithm? Explain your reasoning.

3. What is the space efficiency of your algorithm? Explain your reasoning.

4. Convert your “iterative” algorithm into a “recursive” one.

5. Recursive algorithms leverage the “call stack” to store parameters of each
active calls. What is the space efficiency of your recursive solution? Ex-
plain your reasoning.

4


